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CHAPTER 1.

INTRODUCTION

1.1 THE PROBLEM

Ionizing radiation produces changes in the surface properties of
semiconductor devices. In silicon devices, ionization introduces
interface-states and bulk charges into the oxide passivaticn layer. The-
and other device phenomena cause parameter* changes in transistors which
will cause failure in complex circuits. The system designer's probler :
to select circuits which can survive the expected ionizing environment
Selection of such circuits requires a data base of radiation failure
levels for a catalogue of circuits. Currently, radiation failure levels
are established by short (one hour) exposures of the circuits in question
However, following exposure the parameters anneal and do not remain
stable. In the case of circuits used in a long-term ionizing environmer:
such as a five-year space mission, appreciable annealing occurs during
exposure and failure occurs at a higher (maybe much higher) radiation
level than it did for the shorter exposure used to select the circuit.
Failure to allow for this annealing may result in a much more expensive
design, with perhaps less performance. Performing five-year experiments
is impractical. Methods of accelerating the annealing can not be trusced
because it is known that annealing involves both quantum mechanical
tunneling (which is accelerated by voltage) and thermal emission (which is

accelerated by increasing the temperature), and there is no way of

* These parameters are commmonly the threshold voltage and channel
mobility of real and parasitic transistors.
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accelerating both by the same amount. Predicting parameter changes duri:
exposures of a year or longer, from much shorter (one week) experimenc::

the subject area of this paper.

A second difficulty is circuit complexity. f we were to expose a
complex circuit to a short burst of radiation, and the circuit were to
fail and recover later, we would expect that if the same radiation dose
were delivered slowly the circuit would not fail. However, an acceptaz.-
method to restore the irradiated circuit to its original condition is no:
available. This prevents the above test from being used as a hardness
assurance screen. A method is needed to perform the testing required :to
assure the hardness without destructively testing needed parts. The

method proposed is a variant of lot sample testing.

1.2 COMPLEX CIRCUIT TESTING

First, where does the proposed method fit in to the overall problex
of assuring the hardness of complex circuits? Assume that some form of
lot sample testing will be necessary. In lot sample testing, the more
uniform the production lot from which a sample is to be drawn, the more
successful will be the quality control which results from the testing of
that sample. The greatest uniformity is achieved when all the parts are
from a single wafer. Less uniformity is gained from a single diffusion
batch. However, a modern VLSI* wafer may only yield a few parts and rnew

production methods are being introduced which process only one wafer at s

* Very Large Scale Integration




time. Thus, straight forward lo% sampling becomes limited as a hardnes.
assurance technique. Instead, consider the use of test transistors tha:
are normally included on each chip to represent the circuit. Then :the
test transistors that were on the inked chips (those that failed wafer
probe) could be bonded up as breakouts. If measurements from these
transistors could be related to circuit failure a very effective methcc

monitoring the hardness quality of a processing line could be instizuze:

The parameter changes which will cause circuit failure must be
determined by experiment. For complex circuits, parameter changes which
cause circuit failure are measured by subjecting the circuit along with
representative test devices to the stresses of an ionizing radiation
environment. The test devices are made to be representative by arranginc
that thev be from the same die or the same wafer or at least in the sare
diffusion lot. To make sure that the ionizing radiation environment wil:
simulate the parameter changes produced by exposure to a long term
environment, both a short (one hour) exposure and a moderatelv long (one
week) annealing period are used. This stress will assure that the
transistors and other devices, both real and parasitic, which are in the
circuit will be swept through a combination of parameter changes which
inciude those that would occur during a long exposure. The parameter
changes which are occurring in the circuit devices are tracked bv the
parameter changes in the nearly identical test devices and can therebv *.
accuratelyv estimated. Generally, the failure modes are: an N-channel
trinsistor goes depletion mode causing unacceptable leakage, the threshe -
voltages of either the N-channel or the P-channel transistor or both

increase causing speed loss, an increase in mobility also causes speed




loss, and an inversion under the field oxide produces a leakage pa:th
minimum of an N-channel and a P-channel gate oxide transistor. and an
channel field oxide transistor are needed to measure the oxide charges
which cause the above set of failure modes. In any case, test devices
are needed that will separate the causes of the parameter changes into
interface states and bulk charge.* Then a method is needed for converting
short term data into a long term prediction of interface states and bulr
charge. Finally, for example, the sum of the predicted unannealed

interface states and bulk charges times the electronic charge (e) and ti-

capacitance (per unit area) gives the predicted threshold voltage shif:

This work assumes that the above sampling technique or something
similar will work. To assure the hardness of a particular circuit component,
the prediction of the bulk charge must be combined with the prediction o:
the interface states to give predictions of parameter changes. The pie:.
of the problem addressed by this paper is to find a method for making the
long term prediction of the bulk charge annealing. At this time it is

best to assume that interface states do not anneal.

1.3 BACKGROUND

At the 1972 1EEE Conference on Nuclear and Space Radiation Effects
(Refs. 1 and 2) two models for the rapid annealing of total dose effects
were presented. Both models assumed hole traps at the interface.

However, one model assumed thermally activated detrapping and the other

*Currently the subthreshold method. sometimes along with the charge
pumping method, is used for this separation.
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model assumed quantum mechanical (QM) tunneling of the hole from the trar
to the silicon valence band. A few years later (Refs. 3 and 4), it was
shown that the early rapid annealing was due to dispersive transport of
the holes from the bulk of the oxide to the interface. The earlier two
models are now candidates for the long term annealing which has been
observed. Experimentally, the annealing is dependent on both temperacure
and applied electric field (Ref. 5). A qualitative explanation requires

both the QM tunneling and the thermal emission mechanisms.

The Curie-von-Schweidler law, which is an inverse fractional power -:
time, is a mathematical form which commonly appears in other models. The
model of the dispersive transport (Refs. 6 and 7) which actually explains
the rapid annealing in Si0O,, gives this asymptotically. Jonscher (Ref. &
has shown that this form describes the relaxation of dipoles in
dielectrics. It has been shown (Refs. 9 and 10), that ’'Long-Time Tails’
which occur in strongly chaotic systems, give this form. Examined here
is a particular mathematical model which gives inverse time to a

fractional power depend.-nce discription of the annealing of bulk charge.

QM tunneling and thermal emission are the known mechanisms for the
release of the trapped hole. The applied bias lowers the tunneling
barrier in one direction and lowers the thermal activation energy. Two
models were explored; a one-dimensional (1D) model and a spherical well

model. These models were computationally very complex. The models

require input data consisting of; (1) the distribution of traps as a
function of the distance from the interface, (2) the distribution in

energy of the hole binding energy. and (3) a hole capture cross section i-

N

P




needed to calculate release by thermal emission. 1In addition, the one-

attempts with which to multiply the tunneling probability to get the
detrapping rate, and an excitation energy for the first excited state.
The assumptions made were: (1) an expondential distribution of the trap
distance from the interface, with a 1/e constant of 10-504; (2) a capturs

-16 2 1%

cross section of 10 cm”, which was estimated using the observed 10

-17 . . fq s
10 range for neutral capture cross sections in silicon; (3) the

frequency constant for the one-dimensional model to be 1015'5 which was
estimated using AE=1 eV in the uncertainty principle AEAt>§{; and (%) the
distribution of binding energies was obtained from thermal activation
energies published by Denchenko (Ref. 11). Neither model proved
successful in predicting annealing curves with the above assumed input
data. The predicted annealing was faster than the experimental data fror
Schwank (Ref. 5). Successful prediction required smaller values for the
capture cross section and the tunneling attempt frequency constant.
Adjusting the binding energy distribution makes it possible to fit any
analytical curve. What is needed is a physical model which is inflexible
and cannot be distorted enough to cause unreal extrapolations. Instead,

the physical model must be used to understand the limits on the shape of

the curves.

Interface states must be observed during the annealing of the
irradiated test transistors. Schwank (Ref. 5) observed no annealing of
interface states in the devices he tested, but this may not alwavs be the
case.) In the no annealing case, the interface contribution to each

parameter is kept constant. Where the interface states do anneal the




oy

mathematical algorithm can be used. However, the risk of using it has nt-

been evaluated.
1.4 APPROACH

A prior effort to extrapolate annealing data to long times used

linear systems theory, i.e., the convolution integral (Refs. 12 and 12;:
t
- (- 0
Vth(t) o[ D' (t r)Vth(r) dr (1)

where: vth(t) is the threshold voltage shift as a function of time
D'(t) is the dose rate as a function of time, and
Vgh(t) is the threshold voltage shift annealing curve vesulting

from a unit impulse of dose

The problems with this approach are: (1) that Vth (the threshold voltage:
is assumed to be linear with dose even though it is known to have a
saturation effect; (2) that the function Vgh(f) needs to be known for the
length of time desired for Vth(t); and (3) that, particularly if Vgh(r) iz
experimental, the algorithm for converting Vgh(t) measurements to
predictions vth(t) requires large amounts of computation. (The numerica:

convolution integral has a high number of floating point instructions).

In this work, the nonlinear protlem is avoided by treating each trar
separately and including the nonlinearity (which is a saturation effect
in the treatment of each trap. Because the Vthshift is caused by the

electrostatic field from trapped charges, the traps can be added together




because of a superposition principle. Specifically, each filled trap
experiences a constant probability (R) per unit time of detrapping. 7Th:i:
will result in an exponential decay law for that trap (as in radioacti-:

decay). Mathematically, the number of filled traps is given by

dng (R, t)

+
dc " RneR.) (2)

Which has solution

nt(R,t) = n(R)e RE (3)

Each trap is labeled by its detrapping rate R and the number of such trar-
is n(R)dR. The value of the function n(R), the total number of traps,
serves as the arbitrary constant in this differential equation solution.
If there is a source of holes (a flux of holes produced by the absorbtion

of ionizing radiation), to be trapped by the empty traps, n®(R,t), then:

+
dn R.E) | Hino(R,t)] - R(n*(R, )]

dt (4)

where H is the rate of hole trapping by empty traps, and empty and full

traps must add up to total traps.
+
n®(R,t)+n (R,t)=n(R)

For n+(R,0) -~ 0, i.e., the Cauchy problem, the solution is then




h

-(H+R)t
n*(R.€) = n(R) [H/+R) | [1-e” FFRIE) ()
Because the hole flux will be the same for all traps* and because
the cross section for hole capture will be largely determined by the
physical size of the trap (neutral) and, therefore, will be numerically

near the same value for all traps“ (Ref. 14), H is to be the same for

all traps. The effects of the traps are superimposed by integrating

_e-(H+R)c

NT(t) = oj:<R>{H/<R+H>1{1 JaR® (6)

and for H=0 for all traps initially filled it reduces to

N (e) -orn(R)e'thR (7)

Notice for H=0, the integral is the same as the Laplace transform If
N:(t) is measured for the H=0 case; and some functional form F(Ck,t) is

fitted by least squares to those measurements, to determine the parameters

1

Ck; n(R) can then be found from the inverse Laplace transform L’ F(Ck,t).

Now having an approximation for n(R), the integral for H»0 can be

* Actually most of the holes are created in the bulk and pass through th:
trap layer on the way to the interface. The traps are in a layer within
100 A of the interface. The flux of holes which pass through the traps

which are closer to the interface is somewhat reduced but since in hardene.

oxides 95% of the holes pass through the entire layer this will be

neglected.
# Most of the traps are known, from electron spin resonance experiments.

to have the same structure, called the E’center.
© n stands for the number of traps. N will be capitalized when N is the

result of an integral over R.

nN.<




performed and this will yield an estimate for N+(t) for the long term

irradiation case. 1In particular, let

I

m
1 c
F(Cp.t) = ;ag ck (8)
k=0

a truncated modified Laurent expansion, be least squares fitted to the a:

. + ..
experimental Ny(t), obtaining a set of parameters Ck‘

m

C
n(R) = L EN(e)] = RQ'IE: TR 9)
0

is placed in the integral for H¥0, the result will be a series of

incomplete Gamma functions.

m

NY(t) = E:CRH(k+a)7(l-k-a,Ht) (10)
[\]

If there was a known functional form for n(R) with only a few
adjustable parameters, the problem would be solved. The mathematics for
converting n(R) to N+(t) is in Equation 6. The problem is that without
annealing data out to five years, assurance that a theoretical form is
correct is difficult. The needed theoretical form has some necessary
characteristics. 1In addition to fitting the experimental data, it must
have very few adjustable parameters. This is because forms like Equatior
8, given enough Ck's, will fit a wide variety of data curves but when the

form is plotted beyond the range of the data, extrapolating, the curve

10




will shoot off in most any direction. 1If the fit is to be used to

extrapolate, it must be simple, like a straight line. The form No/:a ha 4

two adjustable parameters and it is a straight line on log-log paper.

When radiation is present, a third parameter H is needed to put the
irradiation rate into the form. In this paper, the form No/ta. the Curie-
von-Schweidler law, (Ref. 8) is assumed to be the correct form and that
extrs lation with this form will be in the right direction. Much of th.
paper is devoted to showing that this form must closely approximate the
real annealing curve. The other assumptions are the exponential decay la.
and the proportionality of H to the irradiation rate 7. The exponential
decay law is not really an assumption as it is the unavoidable consequenc:
of the probability interpretation of quantum mechanics as it is in

radioactive decay.

*
This approach allows us to include specific knowledge about the
trap in a model to predict the result of long term irradiations. The
nonlinear saturation is included. Also included is a method of

extrapolating the annealing curve so that long term predictions can be

obtained from shorter term annealing curves. Finally, the approach gives
an algorithm for converting the extrapolated annealing data to the lere
term prediction which doesn’t involve a lengthy numerical convolution

integral. .1

* Summarized in the number of traps which have the anneal rate R, n(R)

11




CHAPTER 2.

MATHEMATICAL METHODS
2.1 CURIE-VON-SCHWEIDLER LAW

The introduction showed that a Curie-von Schweidler law resulr< fro:
commonly occurring material conditions. These conditions are: an
exponential decay law (as in radioactive decay); and a power law
distribution of decay rates. Specifically; rewriting Equation (3) in
terms of a variable x that R is dependent on,

n+(x,t) - n(x,O)e'R(X)t

and when a distribution of decay rates is introduced the function which
describes the time dependence of the remaining undecayed states is given

by Equation 7 which is here rewritten for convenience.
N(t) = r n(Rye REar (7)
0

where: n(R)dR is the number of sites with decay rate R in the

interval dR.

This is the Laplace transform. Any Laplace transform pair could be used
here even a discrete numerical transform could be used. However, the Laplace
transform pair of interest here is;

a . a-1
N(t) = N,/t (12a) if n(R) = NGR™ "/T'(a) (12b
If n(R) is to be a distribution, it must be integrable. To make the abow«
power law, Ra'l, integrable (it goes to = as R goes to =) it must be

truncated at a very large value of R. Examples of the parameter (x)

12




could be; the energy of the state from which the decay occurs by thermal
. excitation, and the distance that a defect site is from an interface

where QM tunneling occurs between defect site and interface.

bl In the case of QM tunneling, the probability of barrier penetratior.

for a constant barrier height, is given by

I1f this probability is multiplied by the frequency of penetration

attempts, the rate of penetration obtained is

R(x) = fe £¥ (14)

If the traps have an exponential distribution as a function of depth, fro:

the interface into the oxide, given by

BX 4x (15)

n(x,0)dx = Noe-
And if the value of x found from Equation 14:

x = [1n £/R]/B and dx=-dR/RB (16)

is substituted into Equation 15, then

Nof-aRa-l
n(R)dR-'—’B—‘—dR R<f (17)
Where o = 8/B
13




Which is the same functional form as Equation 12b. Since n(x,0) is
undefined for x less than zero, n(R) must be truncated at R=f. Note., irn
Equations &4 through 7 any function x = F(y), dx = F'(y)dy could be

substituted for x and Equation 8 would be unchanged.

There are two detrapping mechanisms known, QM tunneling and thermal

emission. Can thermal emission be modeled using the Curie-von Schweidler

law? The rate of emission is given by,

RE) =v e /KT R <\ and  dR = -R/KT (18)

where v is a frequency term and Rmax-u

Then substituting into

which is normalized to one trap by substituting l/R;axfor No.

n(E)dE - & e oE/KT 4 (20)

Thus, if the distribution of trap energy levels is exponential, then

the annealing will follow the inverse factional power law. There is

reason to believe the exponential distributions will occur. If the trap

results from the distortion of a bond by high temperature processing, le:

a = T/Tp' Then

L4




n(E)dE = —— e PyE (21°

and n(E) is not dependent on the annealing temperature and a is about 20°
K/1273 K or 0.236. H. Scher and E. W. Montroll (Ref. 7) give t™% as the
jump time distribution for hopping in selenium and F. B. Mclean and G. 2.
Ausman Jr. (Ref. 6) extended that theory to Si0,, with a=.25. R. C.
Hughes (Ref. 15) describes these traps as a distribution of Si-0-Si borncd
angles. As these bond angles must result in a Boltzmann distribution of
bond energies from processing and this involves the binding energy of the

electron, the above results.

In this section, it was shown that the Curie-von-Schweidler law
results in a power law for the distribution of detrapping rates. The
power law detrapping rate distribution in turn results from both QM
tunneling through a barrier of constant height and from thermal emission

from an exponential distribution of activation energies.

2.2 EXTRAPOLATION ALGORITHM

The extrapolation algorithm is used to convert data from an

irradiation and anneal test to a prediction of what would be expected fror

a long irradiation. The first part of the derivation of this algorithm It

contained in Equations 2 to 5 of Section 1.4. The derivation is resumed

with Equation 5, which is rewritten here

nt(R.t) = n(R)[H/(H+R)](1-e (PRIT, (5)

15
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Where:

h R is the rate of hole detrapping by full sites

ny(R)dR is the number of traps with decay rate R in the interval ¢F
n(R.t) is the number of traps containing a trapped hole

h (note that the unit of time in the above is still arbitrary)

H, the rate of hole capture by empty sites, is found by multiplying the
flux of holes impinging on a trap by the trap cross section. Since the
flux is proportional to the dose rate so is H. Equation 5 is integra:e:

over R to parallel Equation 7 giving

e-(H+R)t

N(t) = Im n(R) [H/(H+R) ] {1 - ]dR (22
o]

When Equation 12b is substituted for n(R)

NO
- a-1 _-(H+R)C ﬂ
N(t) (o) 0| R*"“[H/(H+R)][1l-e ]dR (22
- NH*y(l-a,HE)” (s

where y(a,x) is the incomplete gamma function.

X1 -
y(a,x) -Ojna e dn

* The details of the integration are in the Appendex.
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This function is shown in Figure 1 for different values of a.
the sublinear initial slope is a result of analyzing data using this
algorithm. The sublinear slope, which has been frequently observed. ca:
be understood as the natural result of annealing. For Ht < 1 the v
function is approximated by

y(a,x) = xa/a.

This approximation is very good up to x=.4. Putting this

approximation in Equation 24 results in

H%y(1l-a.Ht) = H t17%/(1-a).

Note that the value and slope are proportional to H and thereby y. For

values of Ht > 1

y(a,x) = ['(a)

This approximation seems to be good for x > 3 and Equation 24 is

Hv(1l-a.Ht) = HOT(1-a)

; . . a .
The saturation value is proportional o H and a is normally less that

probably less that .1. So a large reduction in the saturation value wil:

not result from very slow irradiation.

17
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In the above, the annealing curve is for the case where all the tr.;
sites were filled, with a hole, at time zero. In the real case, the
traps must be filled in a finite time during which some traps anneal.
During irradiation, the growth of trapped charge is descrited by Equati-
24. At the end of the exposure the distribution of filled states is

given by the integrand of Equation 23; i.e.,

nt (R)AR = "Ng/T(a) R T(H/(H+R) }(1-e B*RI7 45 (

[
[

where r is the exposure time.
Note that while the number of trap sites with decay rate R is given bv
a-1 A
n(R) = N,R /T(a) Ll

the fraction of trap sites with a trapped hole is found from Equation

5), i.e.,

[H/ (H+R) ] (1-e (H¥ROT,

and that some of the sites have been filled and emptied before the end o

the exposure. Equation 25 can be integrated to get

a-1 -(H+R)r>e-Rt

N(t) = [Nog/T(a)] J; [H/(H+R)]{1l-e dR °
0

18
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- NoH%eM [ y(1-a H(t+r)) - y(1-a He) (

o

Where the time t is measured from the end of the exposure, i.e., the clc:
is reset to zero time at the end of the exposure (this is the way graphs
of this function are presented). For large Ht, Equation 16 is
approximated by

-Hr, , «a

i/t (

~>
oo

N(t) = Ny[l-e

In Figures 2, 3 and 4,irradiation curves and the resulting
annealing curves (r=3600) are shown. Also, the low level irradiation
curves which would result are shown to the right. The annealing curves
are plotted on two time scales: first, as a continuation of the
irradiation curve, and second,as in Equation 27, starting at t = 0. The
two curves were plotted by computing Equation 27 and plotting that resul:
as the ordinate value at two absissa values, t and t+r. These three
figures show how well the algorithm represer' = the physics of the probler
First, the saturation is clearly shown. Secondly, during irradiation,
fast traps, with a fast detrapping vate R, will detrap and trap another
hole during irradiation. 1In saturation, there is a small increase of :h=
unannealed fraction with larger value of H, due to these fast traps.
Following irradiation, the fast traps will decay quickly bringing the
value of the unannealed fraction closer to that for smaller values of H -

a time approximately equal to that of the irradiation, which is one hour

in these three figures.

* The details of the integration are in the Appendex.
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An irradiation curve at H=1.E-8 is shown on the right of Figures ..
h and 4. This would be the long term irradiation curve that would resul:

from the low radiation levels of the space environment.

_l For hardness assurance testing, it is important to realize that mor:
accurate information is obtained in the same time by using a short inter:.

irradiation followed by a longer anneal period than by using a lower

level irradiation for the whole time. In an irradiation curve, the fas-
traps add to the slower traps thus using up some of the digits of
accuracy. In an annealing curve, the value of each measurement is from
mostly the traps with detrapping periods greater than the measurement
time. Thus, the accuracy which results from mathematically stripping ou:
the detrapping distribution is greater. The irradiation curve for H=1.E-°
rises above the H=3.2E-3 annealing curve in the figures because of the

adding of these faster traps.

The above algorithm needs error limits determined for the assumption-

if it is to be used with confidence. While the adjustment of N, and a

will fit most experimental annealing curves with great accuracy, the use
of the algorithm to extrapolate to much longer times is dependent on

Equation 12b being the correct functional form for the distribution of

detrapping rates. If this is not true, then a true distribution with 2
different proportion of traps with long trapping times would be most

damaging to an application which was taking advantage of annealing to

permit the use of softer parts. The case of a higher proportion of long )
term traps is simulated below by having a percentage of the traps not
anneal at all. 1In this case,Equations 12a and 12b become
)
]

20
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N(t) = No/t% + N, (293
n(R) = NoR® L/r(a) + N 6(R) (255
where §(R) is the Dirac delta function

A numerical evaluation of the fraction of filled traps which resul::
when the nonannealing traps are included in the distribution follows.
Then, the error that results when the original functional form is assume<
for the distribution is analyzed. When the distribution of Equation 295
is used, the fraction of filled traps during irradiation is given by

N(t) = NgH*y(l-a,Ht) + N, (l-e N1ty (30)

Following irradiation, the same fraction is given by

N(t) = No(y[l-a,H(t+r)] - v[l-a,HE]} + N (l-e 7) (31)

In the next fifteen figures (less Figures 2, 3 and 4), the annealing
curve which is a continuation of the irradiation curve, will be used as
the background. To this background will be added on successive sets of
three figures; an error curve, and the results of treating this error
curve as pseudodata. Adding all the curves at once would make the figure-
confused. To keep the curves readable only one set of computations is

added at a time and the curves can separated by flipping back and forth.
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In Figures 5, 6 and 7 the curves computed according to Equations
and 31 are added to this background (dashed line) and by comparing with
the background curves show the error which was introduced. This error
curve is plotted with Ny=.9 and N;=.1 i.e. 10% of the traps are outside
the distribution. To evaluate the consequences of this error, the
calculation of the unannealed fractionis treated using Equations 30 and
31, for times less than a week, as though it was the experimental
irradiate and anneal data from which the prediction is to be made. A
least square fit is performed, fitting Equations 24 and 27 to the
calculated data out to one week to obtain the parameters Ny, H, and a.

Finally, using these parameters from the least squares fit in Equations .-

and 27, the annealing and the low level irradiation fraction are predic:=-

for times longer than a week. These predictions are added to Figures 3,6
and 7 to get Figures 8, 9, and 10. This results in a prediccion* of
filled traps which is generally higher (therefore safe) than the assumec
real case. Included in these figures are the plots of the fits to the

pseudodata obtained by putting N,, H, a, and t into Equation 27. Note the

way the pseudodata, Equation 31, and the fit deviate from each other at about

one week. When this method is applied to real data, careful examinatior
of the deviation of the data, taken at the longest times, from the
straight line fitted, will give warning of predictions from the method

which might be badly in error.

traps is less than the given by Ra_lform. Will a least square fit to the

* shown as a long dashed line H=1.E-4, a dash-dot line H=1.E-3,and a
dash-dot-dot line H=l E-2
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first week of data under-predict the long term filled trap fraction? Fc-
example, consider the case where there is hole escape by tunneling and b

E/KT

thermal activation «=ve The total rate is found by summing the ra:«

from each competing path.

R = fe"Bx+ x note R > x (32>

Equation 32 can be put through the same analysis used in Equation 1l4,1i.e

n(x) = ﬂe'ﬁxdx note, n(x) is normalized (33)
In[(R-k)/f dR
X = B dx = E?§T;; (34
8.4
v - (]
a-1
- a[géﬁ] (35)

a-1
N(t) = °[TB?£] e REar

(36)

where: Ny = 1

in the case of constant radiation;
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No a-1(_H S(H+R)E
N(t) = P(G)KJ?R-K) [ﬁ:ﬁ][l‘e JdR

H

%
o I-a Y{l-a, (Htx)t] (37
(H+x)

= N

and for the case of annealing following a constant irradiation;

No a-1(_H -(H#R)7, -Rt
N(t) = F(Q)KI?R-K) [E:E][l-e le dR

H Ht
- 4 _ €

T v La, (Hee) (e4) ] - ylLlea, (HeRIED)T (38)
(Hee) "%

‘NO

It will turn out that the above is a very good approximation to the
case in the physical model, where there is tunneling to the interface

(e'Bx) and thermal emission (k).

In Figures 11, 12 and 13, the curves computed according to Equations

37 and 38 are added to this background (dashed line) and by comparing wi:h

the background curves show the error which was introduced. This error
curve is plotted with x=1.E-6; i.e., at about one day the curve deviates
by a factor 0.4. Again, a least square fit is performed, fitting
Equations 24 and 27 to the calculated data out to one week to obtain the
parameters Ny, H, and a. And again, using these parameters from the leas:
squares fit in Equations 24 and 27, the annealing and the low level
irradiation fraction are predicted for times longer than a week. These

predictions are added to Figures 11, 12, and 13 to get Figures 14, 15, and

* The details of the integration are in the Appendex
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16. This results in a prediction of filled traps which for times H: < -
is generally lower than the assumed real case. Note that the effect of
this exponential in x is to lower the saturation value on an irradiatior
curve without changing the values on the slope for (H+x)t < 0.4. This

will cause the prediction to underestimate in this region.

It turned out that for a = 0.1 there was little error in the
prediction and very little difference between the pseudodata and the fi:
at one week. 1in the case of the floor at x = 1.E-6 there was little err~
for a = 0.5. So the program was rerun at « ~ 1.E-5, and the results
plotted in Figures 17, 18 and 19. 1In the a = 0.1 case the pseudodata wa:
off scale for H = 1.E-7. For x = 1.E-5, the deviation from a straight
line can be seen at one week and it is the known that the prediction wii:

underestimate before saturation and overestimate after.

The above is a derivation of the general algorithm. To use the
algorithm, the circuits are first exposed and annealed. The value of the
parameter (e.g., bulk charge; i.e., N(t)) is plotted on log-log scale an-
the slope "a" is found. Equation 24 is fit to the parameter data during
exposure to obtain a correspondence between irradiation rate and H, and i
find N,. These estimates can be used directly or as starting values fov
a least square fitting routine to find the best fit to Equations 24 and
27 simultaneously to all of the data. Having N,, a, and H for the data a
prediction is made by inserting Ny, a, and Hp into Equations 24 and 27.

Hpis given by

H = Hi (39)

to
(W)}

.




A —

i.e., the H for the expected irradiation rate can be found by noting tha-

I H is proportional to irradiation rate.

Pp—

c g
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CHAPTER 3.

PHYSICAL MODEL

3.1 INTRODUCTION TO PHYSICAL MODEL

At first, the objective of deriving a physical model was to see if
data could be predicted from first principles. With each try it was
necessary to include other phenomena and data. Soon it seemed as thoug™
the model was being fit to the data by the choices of what to include.
Clearly, such a model using other questionable data and made up from
physical phenomena chosen to predict data would not be verified by its
prediction of that class of data. The verification of that model’s
ability to predict annealing over a five to ten year period, would have :»
await a five to ten year experiment. All that could be achieved was to
use physical principles to constrain the possible mathematical forms the
real data could be expected to follow. What was desired was some
mathematical form, f(a,B,v:t), which would follow the data accurately ou:
to ten years and the numerical values of a, B, and y could be determined
from early data. All that can be expected, however, is to learn some

things about the function f.

In this section, each of the possible physical processes by which
detrapping can occur is analyzed to determine what they mean to the shape:
of the plots of n(R) and N+(t). Only two physical processes are known to
effect detrapping; Quantum mechanical (QM) tunneling and thermal emission
The data from Schwank (Ref. 5) showed dependence on electric field and

temperature. The height of a tunneling barrier is modified by the
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electric field but tunneling is temperature independent. The maximum
energy of a barrier can also be modified by an electric field, but this
requires a description of the shape of the trap energy well. It was show
in the previous section that QM tunneling (with no electric field) to the
silicon interface almost exactly gives the Curie-von Schweidler law.
Tunneling to the Si0O, valence band or thermal emission introduces a floor
x to the annealing rate as in Equation 32. Negative biases have a floor
which can be dominated by either the tunneling to the oxide valence band
or thermal emission. 1In the positive bias case, the tunneling to the
silicon valence band transitions smoothly to the tunneling to the oxide i:n
a way that results in anneal rates higher than those produced by Equation

32.

The model is based on the facts; (1) that the traps are within 1004
of the interface (Ref. 16), (2) that distributions of activation energies
between 0.8 and 1.8 eV obtained by temperature accelerated annealing
rates (Ref. 11) as shown in Fig. 20, and (3) that these are hole traps
resulting from an excess silicon center (Ref. 14). It was concluded in
Ref. 17 that the traps are intrinsic to the growth process and are thus
likely to have an exponential distribution. In addition, there are
annealing data (Ref. 5) as a function of temperature and bias against which
to test this model. The question of an exponential distribution of the
trap sites has been addressed by Oldham, et al (Ref. 18). Using an anal-
ysis based on Eq. 1 and tunneling, they found that hard oxides follow an

exponential distribution. The one commercial oxide they looked at seemed
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constant over the first 15 A*., The constant distribution gives a logar-

ithmic form (Ref. 19) for the annealing curve.

NT(t) = [-A In(t/ty) + Cl/v, (40)

Actually, because the constant distribution can not be normalized withou-
truncating (i.e., Equation 40 goes to © as t - = ) three constants are

needed for the above.

In the following, QM tunneling will be looked at in a simple one-
dimensional model first. A hydrogen atom model (Ref. 20) using an
analysis from (Ref. 21), was tried, but did not give useful results. The
hydrogen atom model does not correspond physically to the configuration o:
the trap. A spherical potential well model (Ref. 21) was then tryed to
get a self-consistent model, but it predicts the Schwank data (Ref. 5) to be

only marginally successful.

3.2 ONE-DIMENSIONAL MODEL

The one-dimensional model uses a 1-D barrier and a rough estimate,

1015'5, for the frequency constant f£f. Tunneling from an excited trap was

also included. This excited trap level must result from a general

excitation of the other electrons in the vicinity as all hole orbitals ar-

.1
* This is computed for a single level at 3.1 eV. For the 0.8-1.8 eV range ®
centered at 1.25 eV used in this paper, 3.1 eV corresponds to 24 A, It 1
still could be an exponential distribution but 8 must be greater that 1lE-=
29
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occupied. Actually, this is more like phonon assisted tunneling than
tunneling from an excited state, However, treating it like a short liwvec
therefore broad, excited state allows the use of the .41 eV activation
energy given by Schwank and permits the use of the same frequency constar:

that was used for the ground state.

In Figure 21, the hole traps are shown with tunneling from the trag
ground state and first excited level to the interface and the oxide
valence band (i.e., the bonding levels). Shown is a close trap (1),
where both the ground and the excited level tunnel to the interface; a
medium depth trap (2), where the ground state tunnels to the interface bu:
the excited state tunnels to the SiO, valence band; and a deep trap (3).
where both the ground and excited states tunnel to the valence band. No:us
that for the tunneling between the trap levels and the oxide bonding
levels, the tunneling barrier is constant with depth. This is the
tunneling floor for tunneling to the oxide under positive bias. The
smooth transition to this floor results from the continuous barrier
lowering which preceeded the barrier going to zero. For the following
discussion, let (g) stand for the ground state and (e) the excited state.
Then, the barrier penetration paths can be labeled using Figure 21, for

example (2e) is the path from excited state to the valence band.

The barrier heights for negative, positive and zero electric fields
are shown in Figure 22. As the height at x = 0 is arbitrary,tais could
from either the ground or excited state. Note that the barrier height f
the positive field goes to zero with increasing dcnth and then remains

zero for further increases in depth. The tunneling rates have been
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computed using the W.K.B. method (Ref. 22) as a function of trap depth.

Rewriting Equation 14 gives

X

-IB(X')dx’

-p 0

R(x) = fe "= fe (41

The barrier is given by

=~
ro
-

B(x) = 2J2mH/h? (

where: H = E + e(x'+x) in eV.
¢ is the field in V/cm
E is the trap energy in eV
m is the effective mass of the hole

h is Planck’s constant /2«

The integral is

X
p = I B(x')dx'
o

- k(2E/3¢)[1-(1-ex/E)>/%]  for ex > E (43"

= 2xE/3¢ for ex =2 E (43b»

where x=2]2mE/h?

*also called the classical approximation (see Born, Ref. 22) formula (-
Section 12.11)
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Then the rate of detrapping by tunneling from the ground state is giver

Rg - fe ” (Lea

and the rate of detrapping from the excited state is given by

-px-E'/kT
R = fe (a=?

X
where Py is found using Equation 43 but with the energy of the
excited level
E-E' is substituted in the equation instead
E’' is the amount of excited energy, 0.41 eV is used in the

numerical evaluations.

The total rate of detrapping is given by

©~
wn

R =R +R (
X g

These functions are displayed in Figure 23. The lower solid line
curve is Equation 44a plotted for the energy and field shown. The upper
short dashed curve is Equation 44a for that energy less 0.41 eV, which was
the thermal activation energy quoted by Schwank (Ref. 5). The rate of
detrapping by tunneling from the excited state is gotten by mulriplving
the upper curve by the Boltzmann factor e'O'Al/kT, as shown in Equatiorn
44b, which is the probability that the trap is in the excited state.

These curves for T = 275 to 400 K are shown in broken line patterns below

the upper solid line. This curve shows where the detrapping is dominate:
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by tunneling from the ground state and where the excited state. Also
shown is the way the detrapping curve flares into the tunneling floor
where tunneling is to the oxide valence band rather than the oxide-silic
interface. Finally, note that over the range one second to one year &
straight line is a good approximation. However, for some E and £ the
floor will fall in the range, as shown in Figure 24, and a straight line
will be a poor apjroximation. TIf the straight line approximation is goo:

then, p=Bx and by Equation 14 we have the Curie-von-Schweidler law.

The values computed from Equation 45 can be numerically integrated
using Equation 7 to predict the annealing curve. This was done for E=0.¢
to 1.8 eV. The result must be averaged by integrating over the

distribution of trap depth energies.

Ney = | D) [re"sx e'R(E'x)tdx]dE (46)
4]

o]

Where: D(E)dE is the distribution of the trap depth energies, Figures 20

and 25.

- Bx . . . . . .
e 8 dx is the distribution of trap to interface distances

By doing the inter integral over x instead of over R a mnasty singularity

as R approaches the tunneling floor is avoided. The double integral was
done by using Simpson's rule twice, and the results are shown in Figures

26, 27, 28 and 29, along with the measurements from Schwank (Ref. 11). The
second integral is done by a siumply multipling by the values in Figure 27

and adding because the values of D(E) are zero at either end, and because
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D(E) has been normalized. This integral has to be done for each value of
t desired. Here the integral parametric in T,£,8 [1.E7,4.6E6, and 2.E6

cm'l] has been done for three different distributions D(E) [1,3.,4°.

In Figure 26, the computations for T=375 K, =1.E7 and for D(E) =4
are shown as the dashed line. The electric field strengths are labeled.

The 100°C Schwank data are shown with the points marked by vertical tice.

N

and are labeled using the the applied voltage, which was across 450 A.
10 V is about 2.2E6 V/cm. The Schwank data for -10 V are off scale just
above the zero line. 1In Figure 27, D(E) #1 is substituted, and
computations for ¢=2.E6 are off scale to the right. In Figure 28, g=2.E%
was substituted causing the three curves at the three lower values of ¢ :c
compressed toward the zero annealing line, where the -10 V data line
should be. So B=1.E7 and the #4 distribution, as shown in Figure 26, are
the closest fit among the parameters for which the calculations have beec
done. 1If B=1E7, the traps very close to the interface, 10 A. The #4
distribution was taken from an N-channel transistor while the #1 and =3
distributions came from a P-channel. In Figure 29, the data and

computations are shown with temperature as a parameter.

This looked very good, almost like the computations succeeded withou:
fitting any parameters to the data. However, the computations at high
fields were too low, and later data from Schwank (Ref. 23) at an applied
voltage of 20 V were just below the 10 V while the computations were
off the graph. So Denchenko (Ref. 11) was contacted and he prevailed on

Fang (Ref. 24) to smooth their data and extrapolate it to deeper values of

energy. The results are shown as #2 in Figures 20 and 25.
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Schwank’s later data are shown in Fig. 30. Annealing continues to
increase with temperature 100°C-125°C and with applied field 10V-20V. Ti.
calculations made with the extended energy distribution, #2, are shown i:
Figure 31. To see the change, contrast that with the unextended, #3 sho:.:

in Figure 26. The curve at 4.4E6 is off scale to the right. In Equatio:.

-(H+R) 7 e-Rt.

46 the form e-Rtwas used instead of (l-e ) Thus, the computed
results are for an impulse irradiation. There should be a sharp drop in
Schwank’'s data in the first hour which are not simulated by the
computation. Compare with Figures 2, 3 and 4. Recomputing required a
value for H, which was not available since Schwank irradiated at the
temperature of his gamma cell and then annealed at the chosen temperature.
Thus, there are no data at the annealing temperature from which to derive
H by fitting. Also, the comparison of the data parametric in temperature
show poor simulation, Figure 32. Clearly the spread in the computed
curves does not correspond with nature. The one-dimensional model treats

the influence of voltage well, but, the treatment of the temperature

influence is insufficent.

3.3 SPHERICAL WELL MODEL

The one-dimensional model did not handle temperature well. 1In
addition,the conversion from 1D to tunneling from a point trap to a plane
interface was handled by the frequency factor f whose value 1015'5 was an
approximation made without a proper error analysis. By handling the trap

as a hydrogen atom, as was done by Kittel (Ref. 20) for impurity levels in

silicon, a treatment of tunneling similar to 1D was obtained. The

variation with temperature was modeled using thermal emission. Because ot
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barrier lowering, the applied field increased tunneling beyond that ecf :i.
barrier shown in Figure 22, and made thermal emission voltage dependen:.
A treatment which could be modified to fit this case was found in Landa:
and Lifshitz’' book (Ref. 21). This treatment was for ionization of
hydrogen atoms by tunneling at low electric fields like those found in
space. The modified treatment, called the hydrogen atom model, allowed
high fields and a tunneling barrier between the trap and the silicon-SiC.
interface. The annealing curves given by this model cut off as in
Equation 36 or as when there is a floor. More than a 1.75 eV trap depth
was required to get lines approximately straight on a log-log scale. Thse
coulomb potential is subject to barrier lowering by the electric field to
a much greater degree than square well potentials. Also, the hole is not
orbiting around a negatively charged center, so this model is not
theoretically correct. The trap is neutral when no hole is trapped. Wha-
was needed was a well, attractive near the center but otherwise free
field. Because of these considerations, a spherical square well was

tried.

Tunneling from a spherical potential well in the presence of an
applied electric field is also covered by Landau and Lifshitz (Ref. 21, pp
294). They treated only the case where the barrier is reduced to zero bx
the field, whereas here the barrier is also terminated by the interface.
Since the results were not predictive the detailed mathematical derivation

is not included here.

The spherical well barrier is given by
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B(x) = E(1-&n -

3N
+
3 =
)

SN
—
o

s

where: n=2xx

k=] 2mE /h2
f=c|e|m/h2x3

In Figures 33 and 34, B(xX)/E is plotted for different e¢. The spherical

well is between 0 and some radius (a). Lines have been drawn at 2. 4, ar-.

8 A to show (a), the beginning of the barrier. Note that the height of

the barrier at (a) is a function of ¢ and E. The actual lowering is ea.

This barrier was integrated numerically and inserted for p in

Equation 41. The constant f is given by

2n(BA)2e M0 |1.en 2 . 12
A2 Mo Mo
f = m p ' (48)
0
where: ngy=2xa
B?=1/(ra+l)
xa

A is found from sin(ka)=Ae’
k is found from tan(ka)=-k/«x
The formulae for A and k are found from matching the amplitude and

Ka

derivative of sin(ka)=Ae’ at the spherical well boundary (a). The valu:

of f is between 2E15 and 9E15 for a=1 to 8 A and E= 0.8 to 2 eV.
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Temperature dependence is introduced by including thermal emission.
The rate of emission is given by (Ref. 25)
-E/KT
Re avtthge (49)
where: o is the hole capture cross section

vthaJBKT/m is the thermal velocity

3/2
is the density of states in the valence band of the

27amKT
N~ 2 (2]
Sio,.

g = 1 is the degeneracy of the state

KT is the thermal energy.

Choosing o=1E-16 which is the center of the range of capture cross

sections of neutral hole traps in silicon, this reduces to

R, - 4.39E13(KT)2e " E/KT

and R = Re+ Rt (50)
where: Rt- fe ? is the partial detrapping rate from tunneling

Using this model with a=2A and 0=1E-16 computations of the annealing
rate were made. In Figures 35 and 36, these computations are compared
with the Schwank data, parametric in electric field and temperature,

respectively. Clearly the model is not producing the necessary variation

of annealing slope with electric field or with temperature.
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Some correction, could be achieved if a larger o could be used in
Equation 49. By comparing log-log plots of the irradiation data publish--
by Schwank (Ref. 5), taken at 10 V gate bias and gamma cell temperature
30°C), to the irradiation curves in Figure S it could be determined frox
the curvature that H must be about 6E-4. Since, the flux of holes
passing the traps is given by the rate they are generated per unit volure
times their thickness, the probability per unit time is this flux times

the trap hole capture cross section,

H = oGtD

where: G=0.05(ion pair/eV)100(erg/gr-rad)2.27(gr/cm?®)/[1.6E-12(ergs/eV)’
(=7E12 jion pairs /rad/cm?®)

t=450 A

D= 1 Mrad/hr=278 rad/sec

This equation is solved to get o0=7E-14 cm?. Using this o would increase
the the variation of annealing with temperature. To increase the
variation with electric field the (a) could be increased. These values of
cross section and well radius were used in the computations presented

in the following.

The partial rate, Re, is plotted in Figure 37, for energies stepped
from 0.8 to 2 eV step size 0.05 and a very small, approximately zero,
field. The thermal emission rates, Rt’ are added to Reto give the total ?
in regions on the right. The sum for T=275 K, is plotted between 130 and

140 A; 300 K between 140 and 150 A; and so on until 400 K is plotted
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between 180 and 190 A, giving the rising step curves on the right.
Actually, each thermal emission rate is constant over all x, but is
plotted over the limited range to show the position of its values withou-
obscuring the plot of the tunneling rates. Note that the tunneling rate
plots are straight lines on a semi-log scale, even though this is not a
constant height barrier. Equation 46 is used to convert the rate to an
annealing curve. Note, for times less than about 1 hr, that the e'ﬁX and
the tail off in the distribution of trap depth energies will emphasize ti.
straight lines sloping down from che upper right corner. A straight linc
on a semi-log scale will give e'Bx, which when inserted into the
derivation surrounding Equation 14 will give the Curie-von Schweidler law
Later times emphasize the floor lines caused by thermal emission in this
case, and given an exponential distribution of trap depths will also give
the Curie-von Schweidler law. This is the most useful result of the

physical model study.

A similar method of display is used for Figures 38, 39, 40 and 41,
which show the detrapping rates for electric field strengths 0.56E6,
1.1E6, 1.7E6 and 2.2E6 V/cm. The purpose of showing these figures is to
illustrate the manner that the dominance of the floor of the rate curves
shifts from thermal emission to tunneling as the electric field is
increased. This is one of the mechanisms that produces a variation of th.
annealing curves with electric field. However, this is inadequate as it
takes 2.2E6 V/cm to assert this dominance in the 1 hr-lto 1 day-1 range.
That this mechanism failed is seen in Figure 35. Since the floor of most
of the curves is dominated by thermal emission, this must change with

electric field. Close examination of these curves will show that this is
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increasing with electric field. Barrier lowering by the electric fi:!¢

has been included in the E inserted in Equation 49. This barrier loweri: -

i

is shown in Figures 33 and 34. The amount of barrier lowering is the

radius (a) times the field, which is why the unrealistic value of 8 A was

chosen.

In Figures 42 and 43, the total rate R is plotted x=8 to 200 A, for
temperatures 275 and 375 K, respectively. These figures show the variatioc:
of the rate with temperature and the seemingly universal shape of the rac:
curves, i.e., the rate will follow an approximately straight line down to

floor. This type of curve is closely approximated by Equation 32.

The model fails to produce reasonable results for either negative or
very large positive electric fields. Experimentally negative fields do
not anneal at all (Ref. 5). According to the physics used to derive the
model there should be detrapping from tunneling to the silicon interface.
thermal emission and tunneling to the valence band (the other direction

into the oxide). The last two would be equal in value to a positive fiell

w

of equal magnitude. Thus, the annealing should be nearly as large as the
anrealing from a positive field. It isn't. Secondly, as shown in Figure

30 annealing at 20 V is only moderately greater than at 10 V.
Figure 44 shows how much larger the annealing rates that the model gives 3

are compared to the preceeding figures.

Truncation of the annealing curves can be caused by the combination

N

o~ the truncation of the energy distribution and the flaring out to a

t vor of the detrapping rate. To avoid annealing curve truncation, the

et

41

™




additional energy distribution, shown in Figure 45, was added to the
computation matrix. This is an extension of the gaussian to 2 eV. Note

the value at 2 eV is only 1E-8.

Insercing these five distributions and three values, 1lE7, 4.5E6 and
2E6 cm'l, of the tunneiing depth parameter § into Equation 46 gives the
annealing curves plotted in Figure 46. Thi. curve is for 375 K and 2.2E¢
V/cm field. The curves for the different values of B must be identified
by their starting point on the left, 1lE7 on the bottom. Notice how each
curve truncates with the exponential e *" where x is the detrapping rate
at the energy where the energy distributinn is truncated. The point of
these curves is that the energy distributions for these calculations must
be extended even to contributions as low as 1lE-8 to be accurate out to

five years. This is not a practical quality assurance method.

The next two figures, Figures 47 and 48, locate the position of the
results for 4.4E6 V/ecm. 1In Figure 47, the curve for a=8A and o=7E-14,
only the plot of the result from distribution #5, is on scale. In Figure
48 the results of the earlier computation, at a=2 A and o=1E-16 cm?, are
shown. The results from both distributions #4 and #5 are on scale, those
from #5 give a straight line and those from #4 show the e *Ttrucation.

The only way these curves could be put near enough to the 2.2E6 V/cm
results to resemble the data in Figure 30 is to add traps at higher energz-
levels, perhaps at the 3.1 eV used by Reference 18, to the trap energy

distribution.
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Finally, these results are compared with data (Ref.5) in Figures 4%
and 50. Clearly, more variation with voltage is needed. Increasing the
well radius only in the barrier lowering used for the thermal emission
calculation, while reducing it to perhaps 1 A in the tunneling calculatio:
might help. Perhaps, in the temperature variation comparison, Figure 50,
adjusting o to about 2E-13 cm? would raise the 275 K results to match the

259C data.

3.4 PHYSICAL MODEL SUMMARY

Ti.e atiempt to develop a physical model showed that the annealing
curves expected from basic mechanism considerations will be approximatelv
a straight line on a log-log scale. This is the result of the way the
basic phenomena interact. This attempt did not cover u.stributions of
traps with distance from the interface that were other than exponential.
The uniform distribution has been covered (Ref. 19), and produced a
logarithmic annealing curve which is also an approximately straight line

on a log-log scale.

To match data, the model needs further adjustments. The edge of the
spherical well needs to have the top at a radius of 10 A or more and the
deep part of the well needs to be within a radius of 1 A. Then, using the
infinite adjustments available from the energy distribution of the traps
and adjusting o, the data (except for that taken at negative fields) can
be fitted. For negative fields, as the detrapped hole must now travel

clear across the 450 A oxide film rather than 5-20 A, retrapping is
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assumed. Making these adjustments to the model and comparing to a much

larger raviety of data still would not lead to a useful model.
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CHAPTER 4.

CONCLUSIONS

There exists a mathematical model based on an Curie-von Schweidler
law which is mathematically convenient and is an adequate approximatior
for extrapolating data on device positive charge ammealing taken over a

one week period to a five year mission. This model:

o Is the asymtote of various physical models

o Is largely in mathematical closed form, which permits predictions

to be made from data on a small personal computer.

o Cannot be verified experimentally because of the five years needed
for the experiments. However, a study of the basic mechanisms

involved indicates it will be an accurate approximation.
An exhaustive attempt to construct a physical model using the

physical phenomena tunneling and thermal emission did not lead to a model

useful for making long term predictions.
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APPINDIX

INTEGRATION DETAILS

The basic trick to doing the integrals in this section is to

recognize that

l‘G-(R-’-H)t- et'(R+H)t'dtl e
R+H o (1

Thus,

NO
a-1(_H -(H+R)t

N t ,
- — J?R-n)a-lﬂ Ie'(R+H)t dt’dR
F(a)n 0o

N t ,
o ( i JTR_K)Q-le-(R+H)t dRdt’
r(a)(h K
N, (t
- -(k+H)t' a-1 -(R-x)t’ ,
T(a),o) He J?R-n) e dRdt

This is a Laplace transform, when R=x, (R-x)=0
t -(k+H)t'
=N, J He (1/t*%)de’
0

i Jt e-(n+H)t' d[ (Hte)t'

O(H+s)1'° 0 [(H+m)t’ <
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And the integral is the incomplete gamma function, arguments l-a and

h (H+x)t.

H

= N, — v[l-a, (H+x)t] {37
(Rew) o7
For x=0 Equation 37 becomes
N(t) = NoH*y(l-a Ht) (24)

In the Equation 38 case the same trick is used.

NO
a-1{ H -(H+R)r. -Rt
N(t) F(a)xﬁR'n) [H+R] [1'e ]e dR

NoH ,

_ (R_n>a-le-Rt J;-(R+H)t dt’ dr
T(a), o
N H ,

_ e I’ I?R_K)a-le-Rt-(R+H)t dRAL*
r(a)o p

NoH LA 1L ,
- —— J e Mt I(R-n)a Lo RS+ rae
r\Q)O x

NoH

_ jre~Ht'e-x(t+t') I?R_K)a-le-(R-s)(t+t')d(R_‘)dt,
F(Q)o x

Again this a Laplace transform, replace R-x with a single variable going

from 0 to =.
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T LHt' -x(t+t’) -a
- NoH J e e (t+t') Fae’
[

r ' i
- NOHth J e-(H+‘)(t+t )(t+t') de’
[

il Substitute t"=t+t’,r=t+r, and O-t

t+r " _
Ht I e’(H+K)t t" adt"
t

= NyHe

The integral can now be seen two be the difference of two integrals, O-t+r

less O-t.
t+T n
- NO_H_I_—th J e“(H"‘"f)t [(H+n)t"]-ad[(ﬂ+'€)t"]
(H+x) % ¢
Let w=[(H+r)t"], dw=(H+x)dt", t+r=(H+x)(t+7), and t+(H+x)t.
(H+x) (t+71)
- No—_ﬂ__IT;th J w® e %
(Htx) (H+x)t
Thus
= No‘_ﬂ__TT_ th{v[l-a,(H+n)(t+r)] - Y[l-a, (H+x)t]) (38
(H+x) &

For x=0 Equation 38 becomes

N(t) = NoHHC[y(l-a,H(t+r)) - v(l-a,Ht)] (27)
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Figure 21. An energy level diagram showing the traps and their detrapping paths.
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A comparison between the data from Schwank (Ref. 5) and computations using the 1D model, made

Figure 32.

sing trap energy distribution #2, and an electric fleld

E7 1/cm, u

for a trap depth parameter of |

of 2E6 V/cm vs.
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10 V across 450 A.
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